skip to main content


Search for: All records

Creators/Authors contains: "Sharma, Sharad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Emergency response, navigation, and evacuation are key essentials for effective rescue and safety management. Situational awareness is a key ingredient when fire responders or emergency response personnel responds to an emergency. They have to quickly assess the layout of a building or a campus upon entry. Moreover, the occupants of a building or campus also need situational awareness for navigation and emergency response. We have developed an integrated situational awareness mobile augmented reality (AR) application for smart campus planning, management, and emergency response. Through the visualization of integrated geographic information systems and real-time data analysis, our mobile application provides insights into operational implications and offers information to support effective decision-making. Using existing building features, the authors demonstrate how the mobile AR application provides contextualized 3D visualizations that promote and support spatial knowledge acquisition and cognitive mapping thereby enhancing situational awareness. A limited user study was conducted to test the effectiveness of the proposed mobile AR application using the mobile phone usability questionnaire (MPUQ) framework. The results show that the mobile AR application was relatively easy to use and that it can be considered a useful application for navigation and evacuation. 
    more » « less
  2. null (Ed.)
    Situational awareness provides the decision making capability to identify, process, and comprehend big data. In our approach, situational awareness is achieved by integrating and analyzing multiple aspects of data using stacked bar graphs and geographic representations of the data. We provide a data visualization tool to represent COVID pandemic data on top of the geographical information. The combination of geospatial and temporal data provides the information needed to conduct situational analysis for the COVID-19 pandemic. By providing interactivity, geographical maps can be viewed from different perspectives and offer insight into the dynamical aspects of the COVID-19 pandemic for the fifty states in the USA. We have overlaid dynamic information on top of a geographical representation in an intuitive way for decision making. We describe how modeling and simulation of data increase situational awareness, especially when coupled with immersive virtual reality interaction. This paper presents an immersive virtual reality (VR) environment and mobile environment for data visualization using Oculus Rift head-mounted display and smartphones. This work combines neural network predictions with human-centric situational awareness and data analytics to provide accurate, timely, and scientific strategies in combatting and mitigating the spread of the coronavirus pandemic. Testing and evaluation of the data visualization tool have been done with real-time feed of COVID pandemic data set for immersive environment, non-immersive environment, and mobile environment. 
    more » « less
  3. null ; null ; null (Ed.)
    Emergency response training is needed to remember and implement emergency operation plans (EOP) and procedures over long periods until an emergency occurs. There is also a need to develop an effective mechanism of teamwork under emergency conditions such as bomb blasts and active shooter events inside a building. One way to address these needs is to create a collaborative training module to study these emergencies and perform virtual evacuation drills. This paper presents a collaborative virtual reality (VR) environment for performing emergency response training for fire and smoke as well as for active shooter training scenarios. The collaborative environment is implemented in Unity 3D and is based on run, hide, and fight mode of emergency response. Our proposed collaborative virtual environment (CVE) is set up on the cloud and the participants can enter the VR environment as a policeman or as a civilian. We have used game creation as a metaphor for developing a CVE platform for conducting training exercises for different what-if scenarios in a safe and cost-effective manner. The novelty of our work lies in modeling behaviors of two kinds of agents in the environment: user-controlled agents and computer-controlled agents. The computer controlled agents are defined with preexisting rules of behaviors whereas the user controlled agents are autonomous agents that provide controls to the user to navigate in the CVE at their own pace. Our contribution lies in our approach to combine these two approaches of behavior to perform emergency response training for building evacuation. 
    more » « less
  4. null (Ed.)
    Healthcare practitioners, social workers, and care coordinators must work together seamlessly, safely and efficiently. Within the context of the COVID-19 pandemic, understanding relevant evidence-based and best practices as well as identification of barriers and facilitators of care for vulnerable populations are of crucial importance. A current gap exists in the lack of specific training for these specialized personnel to facilitate care for socially vulnerable populations, particularly racial and ethnic minorities. With continuing advancements in technology, VR based training incorporates real-life experience and creates a “sense of presence” in the environment. Furthermore, immersive virtual environments offer considerable advantages over traditional training exercises such as reduction in the time and cost for different what-if scenarios and opportunities for more frequent practice. This paper proposes the development of Virtual Reality Instructional (VRI) training modules geared for COVID-19 testing. The VRI modules are developed for immersive, non-immersive, and mobile environment. This paper describes the development and testing of the VRI module using the Unity gaming engine. These VRI modules are developed to help increase safety preparedness and mitigate the social distancing related risks for safety management. 
    more » « less
  5. null (Ed.)
    Real-time data visualization can enhance decision making and empower teams with human-centric situational awareness insights. Decision making relies on data which comes in overwhelming velocity and volume, that one cannot comprehend it without some layer of abstraction. This research effort aims to demonstrate the data visualization of the COVID pandemic in real-time for the fifty states in the USA. Our proposed data visualization tool includes both conceptual and data-driven information. The data visualization includes stacked bar graphs, geographic representations of the data, and offers situational awareness of the COVID-19 pandemic. This paper describes the development and testing of the data visualization tool using the Unity gaming engine. Testing has been done with a real-time feed of the COVID-19 data set for immersive environment, non-immersive environment, and mobile environment. 
    more » « less
  6. During emergencies communicating in multi-level built environment becomes challenging because architectural complexity can create problems with visual and mental representation of 3D space. Our Hololens application gives a visual representation of a building on campus in 3D space, allowing people to see where exits are in the building as well as creating alerts for anomalous behavior for emergency response such as active shooter, fire, and smoke. It also gives path to the various exits; shortest path to the exits as well as directions to a safe zone from their current position. The augmented reality (AR) application was developed in Unity 3D for Microsoft HoloLens and also is deployed on tablets and smartphones. It is a fast and robust marker detection technique inspired by the use of Vuforia AR library. Our aim is to enhance the evacuation process by ensuring that all building patrons know all of the building exits and how to get to them, which improves evacuation time and eradicates the injuries and fatalities occurring during indoor crises such as building fires and active shooter events. We have incorporated existing permanent features in the building as markers for the AR application to trigger the floor plan and subsequent location of the person in the building. This work also describes the system architecture as well as the design and implementation of this AR application to leverage HoloLens for building evacuation purposes. We believe that AR technologies like HoloLens could be adopted for all building evacuating strategies during emergencies as it offers a more 
    more » « less
  7. During active shooter events or emergencies, the ability of security personnel to respond appropriately to the situation is driven by pre-existing knowledge and skills, but also depends upon their state of mind and familiarity with similar scenarios. Human behavior becomes unpredictable when it comes to making a decision in emergency situations. The cost and risk of determining these human behavior characteristics in emergency situations is very high. This paper presents an immersive collaborative virtual reality (VR) environment for performing virtual building evacuation drills and active shooter training scenarios using Oculus Rift head mounted displays. The collaborative immersive environment is implemented in Unity 3D and is based on run, hide, and fight mode for emergency response. The immersive collaborative VR environment also offers a unique method for training in emergencies for campus safety. The participant can enter the collaborative VR environment setup on the cloud and participate in the active shooter response training environment, which leads to considerable cost advantages over large-scale real-life exercises. A presence questionnaire in the user study was used to evaluate the effectiveness of our immersive training module. The results show that a majority of users agreed that their sense of presence was increased when using the immersive emergency 
    more » « less